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Abstract: Microwaves have been investigated as an attractive alternative (and efficient) energy source 
to inefficient pressurized ovens for polymer processing. However, industrial use of microwave 
processing has been impeded by the lack of proper applicator design, modeling, and 
control/monitoring methods. In this paper, we will briefly talk about conventional multimode 
applicators, waveguide applicators, and recently developed single-mode applicators. Then we will 
present the electromagnetic modeling of a novel adaptable multi-feed multimode cylindrical cavity 
applicator where the spatial distribution of the electric field can be specified a priori to accomplish a 
desired processing task. At the end, the port-to-port coupling analysis will be performed both 
theoretically and numerically. 
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1. Introduction 
 
Microwaves have been investigated as an attractive alternative (and efficient) energy source to 

inefficient pressurized ovens for material processing, including polymers and composites. The 
observed advantages are volumetric and inside out heating, direct and fast heating, high selectivity, 
and high controllability. Results have been reported on enhanced polymerization rates [1-2], increased 
glass transition temperatures of cured epoxy [1], improved interfacial bonding between graphite fiber 
and polymer matrix [3], and increased mechanical properties of the composites [4].  However, 
industrial use of microwave has been impeded by the lack of proper applicator design, modeling, and 
control/monitoring methods.  Most existing applicators are for specific applications only and the 
applicator design has to be performed over and over again for new processes, mostly by trial and error 
without the assistance of a model.  The development of adaptable applicators, which can be configured 
to accomplish a variety of processing tasks, is very important. 

 
Commonly used applicators for materials processing can be classified into three basic types: 

waveguide, multimode and single-mode applicators. A waveguide applicator is a hollow conducting 
pipe with either a rectangular or a circular cross-section. The wave inside a waveguide applicator is 
fundamentally different from that inside multimode and single-mode applicator. The former is a 
traveling wave and the latter is a standing wave. Energy from the microwave generator travels through 
the waveguide and is partially absorbed by the process material. The remainder of the energy is 
directed to a terminating load. Traveling wave applicators are primarily used for continuous processing 
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of high-loss materials; low-loss materials require an excessively long waveguide or a slow processing 
speed to absorb the necessary energy. 

 
The most popular applicator type is the overmoded or multimode cavity where the electric field 

distribution is given by the sum of all the modes excited at a particular frequency. The frequent use of 
multimode cavity applicators is a result of their low cost, simplicity of construction, and adaptability to 
many different heating loads. This kind of applicator is very versatile in that it can accept a wide range 
of material loads of different dielectric losses, size and shape [5]. However, that may limit product 
quality, particularly with regard to the uniformity of temperature distribution in processed materials. 
Difficulties for multimode cavity analysis of electric field distributions result essentially from 
coexistence of many resonant modes. By rotating the sample and/or using metal stirrers, it is possible 
to improve the E-field uniformity and, thus, the heating uniformity inside the multimode applicator 
[6]. The mode-stirrer is a fan within a multimode cavity designed to change the resonance of multiple 
modes within a 4MHz band near 2.45 GHz. As the mode-stirrer rotates, the resonant conditions of the 
cavity change, focusing the energy into different field patterns. The rotation of the fan cycles the 
cavity through the different resonant modes with a pattern that accepts whatever random heating 
occurs across the sample. This may improve the heating uniformity to a certain degree, but makes it 
more difficult to predict the electric field distribution and not suitable for precision materials 
processing. 

 
The single-mode resonant applicator is designed to support only one resonant mode, therefore 

resulting in highly localized heating. These applicators can efficiently provide high field strength at 
mode-specific locations within the cavity since single frequency systems can be tuned for maximum 
throughput. Although single-mode applicators have a high efficiency relative to multimode and 
traveling wave applicators, sometimes it is very difficult for them to provide desired uniform heating 
across a large sample. To obtain uniform heating under these conditions, a technique called mode-
switching was developed, in which several modes with complementary heating patterns are 
alternatively excited [7]. 

 
With a fixed frequency microwave power source, mode-switching can be achieved by 

mechanically adjusting the  length of the cavity. This mechanical process slows the response of the 
system to temperature changes. With a variable frequency power source, modes can be changed by 
changing frequency. As a result of the instantaneous variable frequency mode switching, not only the 
speed of the process but also the controllability of the process is much improved [8]. However, 
variable frequency sources are inherently less efficient than the single frequency versions; the 
equipment is also very expensive. In our research effort, mode-switching can be obtained by varying 
the power delivered to multiple ports, hence eliminating the need for mechanical applicator 
adjustments. 

 
In this case, we can tailor the field intensity to achieve high field strength in the regions of the 

applicator requiring high fields (and hence regions where heating is desirable) and low field intensities 
in regions where heating is not desired. We will explore multi-port multi-feed applicators where the 
field spatial distribution can be specified a priori to accomplish a desired processing task. Single 
frequency operation is preferred since the over-all system efficiency is generally higher for such 
“tuned” systems. 
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Specifically, in our modeling, we are exciting a cylindrical cavity via two ports to get a TM mode 
and a TE mode simultaneously. With these separately controllable TM and TE modes, we not only get 
desired field strength distribution at specific locations inside the cavity, but also have the ability to 
make heating direction selection; this is particularly useful when anisotropic materials are processed. 
Taking advantages of TM and TE modes, it is easy for us to get very low port-to-port coupling. This 
will be shown later in both analytical analysis and numerical results. 

 
2. Adaptable Multimode Applicator 

 
Inside a circular cylindrical cavity, the resonant frequencies for TE and TM modes as functions of 

cavity height h and radius a can be expressed as [9]: 
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where  and  are tabulated zeros of the Bessel’s function and the derivative of the Bessel’s 
function, respectively. Resonant frequency f can be plotted as a function of cavity length in a mode 
diagram for a fixed radius, as shown in Figure 1. 
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Figure 1. Mode diagrams for a circular cylinder (TM: left, TE: right). 
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(a) TM020 + TE211     (b) TM020 + TE311 
Figure 2. Electric field distributions for different combination of TM and TE modes. 

This design will include two feed ports. The feed structure will not be coaxial (for TM modes) and 
loo

m one port 

y observing the mode diagrams, it is seen that when the cavity height is adjusted, we can have 
diff

or each combination of TM and TE mode with fixed cavity height, by varying the power 
del

 

p (for TE modes). Although these are useful methods for feeding, as well as being typical, they may 
not lead to sufficient decoupling of the two ports. If the feeds are orthogonal, the mutual coupling 
between ports is zero (e.g. 1221 S0S == ). This is a desirable condition since a non-zero transmission 
term indicates that power fro will exit the cavity through the other port doing no significant 
heating of the polymer. The feed mechanism chosen, to minimize mode cross-coupling, are an axial 
slot (to excite a TE mode) and an azimuthal slot (to excite a TM mode). These slots are electrically 
very narrow to avoid mode cross-coupling. 

 
B
erent combinations of TM and TE modes resonant at 2.45GHz, and thus get different electric field 

distribution inside the cavity. When the radius a = 10.75cm and height h = 7.34cm, we can get the 
combination of TM020 and TE211, which is shown in Figure 2(a); while a = 10.75cm and h = 9.50 cm, 
the combination of TM020 and TE311 is shown in Figure 2(b). For both cases, we have a bulls-eye 
heating pattern (TM020) at the center as well as some distributed spots (TE211 or TE311) around it. TM 
mode has the electric fields along the central axis of the cylinder, which is best suited for heating rods 
and cylinders located along the axis of the cylinder; TE mode has the electric fields parallel to the 
bottom plate of the applicator, which is best suited for heating flat panels or disks.  

 
F

ivered to each port, mode-switching can be obtained at a single frequency without mechanically 
adjustment of the cavity dimensions. This transition can be shown in figure 3 for the combination of 
TM020 and TE211 case. To investigate the curing field for simultaneous mode excitation, a parameter 
α is introduced. A pure TE mode excitation has 0=α  while a pure TM mode excitation is given by 

1= . The cavity model was verified for these two cases using the appropriate slot excitation 
ds. The numerical simulations using COMSOL’s FEMLAB code were performed for different 

α , which means different relative power delivered to each port. Figure 3 shows the field distribution 
r each α , where (c) is the same as that in figure 2(a) but with different scale. It was determined that 

55.0=α ielded the most uniform curing field in the center plane of the applicator. A uniform field is 

α
me

fo

tho

y
desirable since that will allow the curing of the largest diameter part. 
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As mentioned above, the mut  a very important factor that 
influences the performance of the applicator. To get better performance, we wish to get lowest 
pos

(a) α = 0 

 
 
 
 
 
 
 
 
 

     (b) α = 0.25 
 

 
 
 
 
 
 
 
 
 

 (c) α = 0.55 
Figure 3. Parametric study on the weighting factor 

     (d) α = 1 
α for the combination of the two modes. 

3. Port-to-Port Coupling Analysis 
 

ual coupling between the two ports is

sible coupling in order to avoid the energy leakage through the ports. In a homogeneous, source-
free cylindrical cavity with perfectly conducting walls, the electromagnetic fields inside the cavity can 
be derived from Maxwell's equations and boundary conditions [9]. For TM020 mode, we can get: 
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Considering the field generated by azimuthal slot 

for 

4. Closing Remarks 

In this paper, we have presented the electromagnetic modeling of an adaptable multimode 
mic
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